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Abstract

The Wiener or noise power spectrum (NPS) is a well-
known tool in the assessment of image noise.  Normally
the spectrum is computed from digital data representing an
image at some stage of processing, scans of film, or scans
of a hardcopy output medium.  In preparing the NPS
estimation, the data frequently contain defects, which
affect the resulting spectral estimate.  These defects
include density gradients (non-stationary mean), scratches,
dust, coating defects (outliers), signal processing induced
artifacts, or images of any of the above defects on a printed
image.  Drift of the mean and outliers causes a bias in the
spectral estimate at low spatial frequencies.

In this paper, we describe a method employing the
classical statistical process control tool of control charts as
a test to indicate that all non-random signals have been
removed from the test data set. To demonstrate the method,
we use the periodogram method of spectral estimation, in
which the scanned data is grouped into short segments.
The effect of the mean drift can be suppressed by
subtracting a linear least squares fit from each segment.
Control chart methodology is applied in the data
processing, assuming the digital data are normally
distributed.  The control chart is used to identify data
segments containing outliers.  These segments can then be
excluded from the spectral estimate, resulting in improved
noise power spectrum and RMS granularity measurements.

Introduction

Methods for the estimation of NPS, and the subsequent
estimation of RMS granularity, are well-known in the
literature.1 We use the periodogram method of spectral
estimation, based on short data sequences. This facilitates
trend removal and outlier rejection. We begin with a
microdensitometer trace of a uniformly exposed
transparency or reflection print, taken with a long, narrow
slit. Equivalently, a 1-D slit scan can be synthesized from
2-D scanner data. For isotropic random noise, analysis of
the 1-D slit scan yields a slice through the rotationally
symmetric 2-D NPS surface. The NPS estimator is:
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where ∆Dm(x) is the optical density fluctuation at point x in
the mth segment (out of M total segments), νk is the kth

spatial frequency, ∆x is the sample spacing, L is the length
of the scanning slit, and N is the number of points per
segment. The discrete Fourier Transform indicated in Eq.
(1) yields an NPS estimate at a series of spatial frequencies
spaced at ∆ν = νk+1 – νk = 1/(N∆x).

The RMS granularity associated with a circul
aperture of radius r can be computed from this 1-D N
estimate by the following equation:
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where νk > 0 and J1 is the first-order Bessel function of th
first kind.

Generally we hypothesize that the microdensity d
from a flat field image represent samples from a 2
Gaussian, ergodic random process, which is the sourc
the perceived graininess seen in the image. Under th
conditions, the estimators given in Eq. (1) and Eq. 
converge to the population values in the limit of large d
sets. Other, non-random sources of density variation in 
scan data, such as density gradients (trends), or the l
localized density excursions produced by coating a
exposure defects (outliers), lead to low-frequency bias
the estimate.2 Although these defects may also be visib
and objectionable in the image, we do not wish to inclu
them in the NPS and RMS granularity estimates, which 
taken to be objective correlates of graininess, rather t
large scale non-uniformities. The main subject of th
paper is a technique for outlier identification and remova

Trend and Outlier Removal

The need to remove non-stationary behavior and ot
non-random variations prior to spectral estimation has b
recognized in the literature.3 Preprocessing of the data i
not without pitfalls, however, and must be done carefu
in order to avoid introducing other unwanted biases in
the spectral estimate as an unintended side effect. 
signal processing literature contains some ve
sophisticated techniques for the robust estimation of po
spectra.4,5 Our emphasis here is on techniques that, wh
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not as rigorous or powerful as some others that have been
proposed, have the advantages of simplicity and efficiency,
while maintaining a strong statistical foundation.

Trend removal is the first step in preprocessing, and is
often accomplished by fitting a linear or polynomial
equation to the microdensity trace. A more complex
functional form is justified in situations where a priori
knowledge of the non-stationary components is available.
Note that the removal of density drift in the input data
corrects for non-stationary components in the mean value
of the process, but not the variance. This is important if the
noise exhibits a strong signal dependence. In our
experience, transparencies and prints of photographic
quality contain density gradients that can be modeled as
piecewise linear drifts in the mean, over the segment
lengths typically chosen for NPS analysis. Hence, our
strategy is to perform a linear least squares regression on
each segment of data, and to then subtract the fit from each
segment. One side effect of any subtractive approach is the
loss of the zero frequency NPS estimate.6 Fortunately, this
loss is not catastrophic, as most NPS curves are monotonic
(allowing for robust extrapolation), and the zero frequency
is naturally excluded from the RMS granularity estimate of
Eq. (2).

The second step in preprocessing is outlier removal. If
the data of interest are presumed to follow a normal or
Gaussian distribution, a test for normality is indicated. The
Gaussian assumption is a good one, particularly for natural
sources such as photographic granularity or electronic
noise. In digital systems, components of limited bit depth
may introduce textures that are demonstrably non-
Gaussian, through a rendering algorithm such as error
diffusion or periodic dither. In these cases, a normality test
may not be appropriate.

Many tests for normality have been described in the
literature.3 Since our NPS estimation technique is based on
segmentation of the data, we favored a segment-based
approach. This class of approach, based on segmentation or
grouping of the data, has been quite successful in the direct
estimation of RMS granularity.7 The strategy is to identify
and remove outlying segments, rather than individual
points. With this approach in mind, we turned to the
methodology of control charts.

Control Chart Methods

Although classical control chart methods were
originally developed to monitor and improve
manufacturing processes,8 these techniques provide a tool
for determining and analyzing the stability of research
instruments and the data collected using them.  In the
technique described in this work, we use a control chart to
examine the data collected with a microdensitometer and
eliminate scan segments that are not the random noise
components expected from a microdensitometer trace of a
uniform neutral material. We treat the scan as a set of
independent and randomly distributed density
measurements and any data segments that exceed the
control chart limits arise from a spurious causal
248
mechanism, which disqualifies them from inclusion in the
NPS calculation.

To apply the control chart method, a series of
measurements within a block of microdensitometer
measurements are considered to be a rational subgroup. A
rational subgroup is defined as a set of observations within
which the variations may be considered on engineering
grounds to be due to non-assignable or random causes.
Control limits, (upper control limit UCL and lower control
limit LCL) are derived according to the standard formulas9

for the central tendency given in Eqs. (3) and (4). In a
control chart for the sample means (the X-bar chart), the
centerline is the mean of the subgroup means (X double-
bar), and the number of data points in each subgoup is
denoted as N.

N
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Good practice requires that two control charts be
maintained to monitor trends in both the mean and
variation for a process under evaluation. For the control
chart monitoring the variation (the s chart), S  is the mean
standard deviation of all of the subgroups (or blocks), UCL
is the upper variation control limit, and LCL is the lower
variation control limit. The formulas for calculating the
variation limits are given in Eqs. (5) and (6).
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Once the control chart limits have been established and
data segments that lie outside the 3σ UCL and LCL limits
have been discarded, a number of other criteria are applied
to the data segments.  These criteria are designed to detect
trends or unnatural patterns in the data, which are
associated with a non-random or systematic pattern.  The
criteria are based on the probability of significant patterns
of data points occurring in the data sequence.  The area
between the upper and lower control limits is divided into
six zones spaced in one standard deviations (σ) increments.
Using these zones the criteria are:

Tests for instability
• 1 point > 3σ
• 2 out of 3 points > 2σ
• 4 out of 5 point > 1σ
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• 8 points in a row above or below the centerline

Test for Stratification
• 15 or more points < |σ|

Test for a multi-modal behavior
• 8 or more points > |σ|

Tests for a systematic variation
• A long series of points with a high – low
   or a periodic pattern.

In our NPS estimation procedure, a control chart 
initially constructed using the segment means, to aid in 
detection of trends. In most cases, the need for some l
of trend removal is indicated, and the piecewise line
regression technique is applied. At that point, the mean 
been essentially removed from the data, and furt
analysis is based on the variation control chart (segm
standard deviations). The tests indicated above are app
to the segment standard deviations, and outlying segm
are identified. The tests are applied in the order giv
above, with the following modifications. The upper an
lower control limits are established via Eqs. (5) and (6);
Eq. (6) yields a result less than zero, then the lower con
limit is set to zero (since by definition the standa
deviation is a positive number). We then begin with t
first of the instability tests, which searches for segme
standard deviations exceeding the 3σ limits. These are
discarded first, and then the upper and lower control lim
are recomputed. This was found to be necessary in prac
to guard against extreme outliers, which bias the calcula
control limits themselves, preventing meaningf
application of the remaining tests.

In the tests that apply to “runs” of segments, th
exclusion of segments proceeds as demonstrated in
following example. In the second instability test, th
control chart is examined in the “2 to 3 σ” zone. Starting
from the beginning, the first three segments (j = 1,2,3) 
examined. If two out of the three segment standa
deviations are simultaneously greater then the up
control limit, or simultaneously less than the lower contr
limit, then the second segment that is outside the limit
marked for exclusion. The other two segments in the gro
of three are retained. The next group of three to 
examined depends on the last “good” segment in 
previous group. For example, if all three segments h
passed the test, the next group of three to be exam
would be segments j = 2,3,4. If the second segment 
failed, then the next group examined would be j = 3,4,5
the third segment had failed, the next group examin
would be j = 4,5,6. The process continues until 
segments have been examined.

After all the tests have been applied to all th
segments, the segments marked for exclusion are remo
and the control limits are recalculated. The process th
resumes from the beginning, until the number of iteratio
exceeds some preset limit, or preferably until all segme
pass all of the tests (or all segments have failed). Thus,
algorithm has a built-in stopping criterion with a soun
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statistical basis, which arbitrary empirical methods lac
We have demonstrated that the algorithm does not rem
segments from “clean” computer generated data. Thus,
are assured that the algorithm decreases the risk o
positive bias error in the NPS for data sequences corrup
by outliers, but does not pose the risk of a negative b
error in the absence of outliers.

NPS Examples

Figure 1 shows two variation control charts, generat
from a microdensitometer slit scan of a flat field in 
reflection print. The standard deviation of each segme
has been plotted as a function of the segment number. 
began with 256 segments, each containing 128 points. T
top control chart shows the segment standard deviatio
after the piecewise linear trend removal has been appl
The presence of segments outside of the 3σ zone is
apparent; careful inspection of the chart reveals t
presence of other unnatural patterns. The bottom con
chart shows the status of the segments, after the ou
rejection algorithm has been applied iteratively until n
further segments are excluded. Inspection of this ch
demonstrates that the unnatural patterns have b
removed. Note that the number of segments has b
reduced to 168 out of the original 256. The bias in the N
estimate, because of outliers, is thus eliminated at 
expense of a small loss of statistical precision in the ove
estimate. The standard error of the estimate is given by:1

M
SE 1=                                                                           (7)

where SE is the standard error of the NPS estimate at e
frequency, and M is the total number of segments.

Figure 1. Control charts before and after outlier removal.

Figure 2 shows the raw NPS estimate, using all 2
segments (solid line). The estimate shows evidence 
nonstationarity in the mean of the data, as demonstrated
the sudden increase in the NPS at zero spatial frequen
The presence of outliers is not always evident in the N
curve. The dotted curve in Fig. 2 shows the NPS estim
after linear trend removal. The zero frequency NP
estimate has been lost; there has been some reductio
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the estimate between 0.25 and 1.25 cycles/mm. The long-
dashed curve in Fig. 2 shows the result of subsequent
application of the control chart algorithm. A further
reduction in the NPS over the band 0.25 to 1.25 cycles/mm
is observed. Finally, the short-dashed line in Fig. 2
demonstrates the behavior of the NPS estimate for a data
set consisting of computer-generated random numbers. In
this case, the process is stationary, the zero frequency NPS
estimate is stable, and no outlier removal is required, as
expected.

Figure 2. NPS estimates with and without preprocessing.

RMS Granularity Estimates

As Fig. 2 shows, the effect of the outlier identification
and removal procedures on the NPS estimate may appear
subtle. However, subtle changes in the NPS estimate may
imply significant changes in predicted graininess,
particularly if they occur at spatial frequencies that are
visually important. Figure 3 shows the series of RMS
granularity measurements for each step on the black and
white grain ruler developed by Maier and Miller,10 obtained
via NPS estimation and application of Eq. (2). The solid
circles represent the estimated RMS granularity of each
step, with no trend or outlier removal applied. The solid
triangles represent the adjusted estimates, using trend and
outlier removal. The log of 1000 times the RMS
granularity is plotted on the y-axis, with tic marks at 0.05
log units, or about twice the value of a just noticeable
difference (JND) in granularity for a uniform field (1 JND
in graininess = a 6% change in RMS granularity11).
Preprocessing of the data before NPS estimation reduces
all of the RMS granularity estimates, and has a major
impact on the estimates at the lowest steps on the ruler. In
particular, the raw estimates would predict that step 2
might exhibit slightly higher graininess than step 3, which
is not consistent with direct observations of the graininess.
Furthermore, the estimate of the RMS granularity of step 1
is reduced from about 4.5 (RMS times 1000) to about 2.5,
a difference which is about 10 times the JND, and again
more consistent with direct observation of the graininess.
In general, we have found that application of trend removal
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and the control chart outlier removal algorithm has lowered
our detectability of granularity in hardcopy photographic
prints from around 5 (RMS times 1000) to 2, a significant
increase in sensitivity.

Figure 3. RMS granularity of black and white grain ruler steps.

Conclusion

The control chart methodology enables significant
improvements in noise power spectrum and RMS
granularity measurement capability.  Using this method,
we have been able to lower the threshold of detectability
for hardcopy photographic print media granularity
measurements made with a microdensitometer to σd < 2,
approximately a 60% reduction from the previous value of
σd = 5 (RMS times 1000).
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